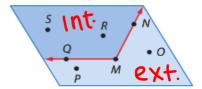
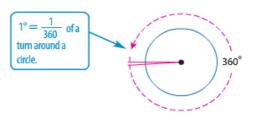


Opposite Rays:

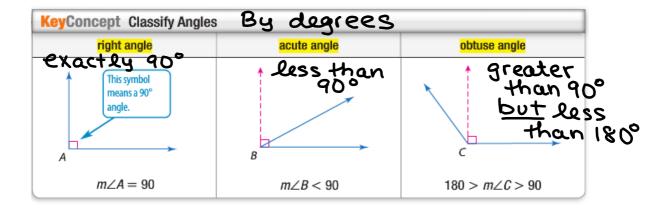
If you choose a point on a line, that point determines exactly two rays called **opposite** rays. Since both rays share a common endpoint, opposite rays are collinear


Angle: formed by 2 noncollinear rays that have a common endpoint.

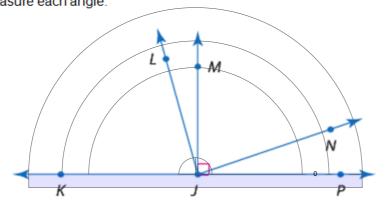
Interior vs. Exterior


An angle divides a plane into three distinct parts.

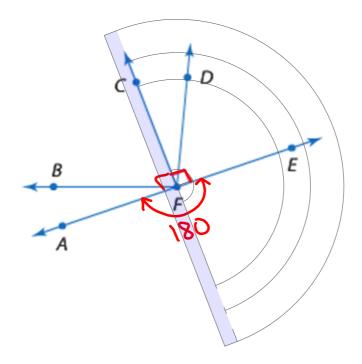
- Points Q, M, and N lie on the angle.
- Points *S* and *R* lie in the **interior** of the angle.
- Points *P* and *O* lie in the **exterior** of the angle.



Degrees


Angles are measured in units called degrees. The **degree** results from dividing the distance around a circle into 360 parts.

Classifying Angles



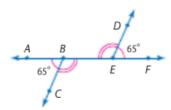
examples 1a and 1b: Classify each angle as right, acute, or obtuse. Then use a protractor to measure each angle.

example 1a)

ZNJP <u>right 90°</u>
ZLJP <u>obtuse 105°</u>
ZNJP <u>acute 19°</u>

example 1b)

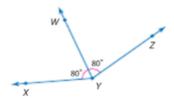
LAFB acute 19°


ZCFA <u>right 90°</u> ZAFD <u>obtuse 11</u>5°

ZCFD acute 27°

Congruent Angles

Congruent Angles Just as segments that have the same measure are congruent segments, angles that have the same measure are *congruent angles*.


In the figure, since $m \angle ABC = m \angle FED$, then $\angle ABC \cong \angle FED$. Matching numbers of arcs on a figure also indicate congruent angles, so $\angle CBE \cong \angle DEB$.

You can produce an angle congruent to a given angle using a construction.

StudyTip Segments A line segment can also bisect an angle.

A <u>ray</u> that divides an angle into two congruent angles is called an <u>angle bisector</u>. If \overrightarrow{YW} is the angle bisector of $\angle XYZ$, then point W lies in the interior of $\angle XYZ$ and $\angle XYW \cong \angle WYZ$.

Just as with segments, when a line, segment, or ray divides an angle into smaller angles, the sum of the measures of the smaller angles equals the measure of the largest angle. So in the figure, $m \angle XYW + m \angle WYZ = m \angle XYZ$.

Angle Addition Postulate

examples:

ALGEBRA In the figure, \overrightarrow{KJ} and \overrightarrow{KM} are opposite rays and \overrightarrow{KN} bisects $\angle JKL$. If $m\angle JKN = 8x - 13$ and $m\angle NKL = 6x + 11$, find $m\angle JKN$.

2)

$$\angle JKN \stackrel{\frown}{=} \angle NKL$$
 $M \angle JKN = M \angle NKL$
 $8X - 13 = 6X + 11$
 $-6X + 13 = 6X + 13$
 $2X = 24$
 $2X = 24$
 $2X = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 = 24$
 $3 =$

6x+11 N 8X-13

3. Suppose $m \angle JKL = 9y + 15$ and $m \angle JKN = 5y + 2$. Find $m \angle JKL$.

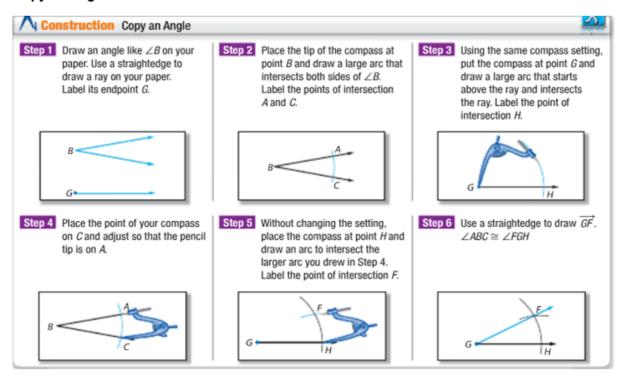
$$m \leq JKL = 9y + 15 \text{ and } m \geq JKN = 5y + 2. \text{ Find } m \geq JKL.$$

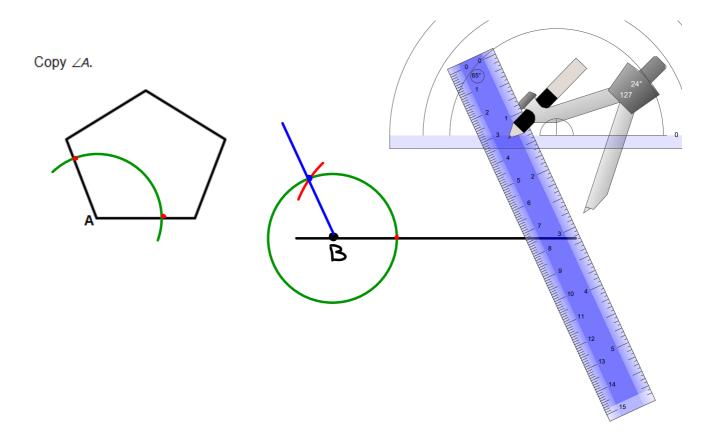
$$m \leq JKN = \frac{1}{2}m \leq JKL$$

$$2(5y+2) = 9y+15$$

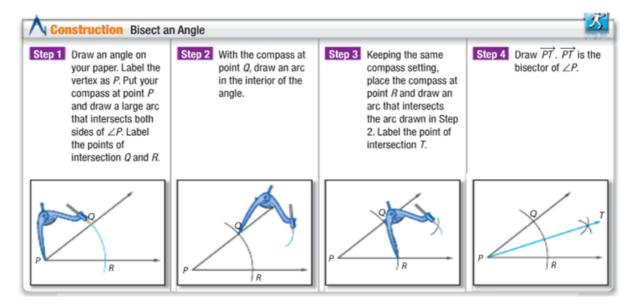
$$= 9y+15$$

$$= 9y+15$$

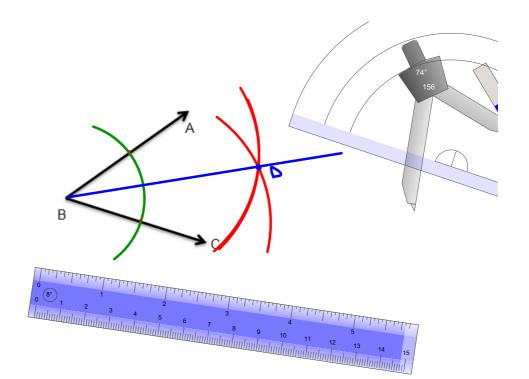

$$= 9y+15$$


$$= 10y+4 = 9y+15$$

$$= 114$$


$$y = 11$$

Copy an Angle:



Bisect an Angle:

Bisect ∠ABC.

